Current Research
Our research is focused on studying the structure and function of the normal and diseased retina at the level of single cells in the living human eye. We use advanced optical imaging techniques with adaptive optics to study the cellular mosaics of the retina, from the retinal pigmented epithelial cells that line the back of the eye, to the photoreceptors that absorb light and initiate the first step of seeing, to the retinal ganglion cells whose parallel neural circuits process visual information and send it along to the rest of the brain. Visual function can be impaired when any of the different classes of cells in the retina are damaged or lost from causes such as genetic abnormalities, disease or trauma.
Selected Recent Publications
Zhang M, Gofas-Salas E, Leonard BT, Rui Y, Snyder VC, Reecher HM, Mecê P, and Rossi EA. Strip-based digital image registration for distortion minimization and robust eye motion measurement from scanned ophthalmic imaging systems. Biomedical Optics Express. 2021; 12: 2353-2372. DOI: 10.1364/BOE.418070.
Mecê P, Gofas-Salas E, Rui Y, Sahel JA, & Rossi EA. Spatial frequency-based image reconstruction to improve image contrast in multi-offset adaptive optics ophthalmoscopy. Optics Letters; 46(5):1085-1088. 2021; DOI: 10.1364/OL.417903.
Amarasekera S, Williams AM, Freund KB, Rossi EA, & Dansingani, KK. Multimodal imaging of multifocal choroiditis with adaptive optics ophthalmoscopy. Retinal Cases & Brief Reports. 2021; accepted January 21st, 2021. DOI: 10.1097/ICB.0000000000001134.
Vienola K, Zhang M, Snyder VC, Sahel JA, Dansingani KK, & Rossi EA. Microstructure of the retinal pigment epithelium near-infrared autofluorescence in healthy young eyes and in patients with AMD. Scientific Reports. 2020; 10:9561. DOI:10.1038/s41598-020-66581-x. PMID: 32533046.
Suthaharan S, Rossi EA, Snyder V, Chhablani J, Lejoyeux R, Sahel JA, & Dansingani K. Laplacian feature detection and feature alignment for multimodal ophthalmic image registration using phase correlation and Hessian affine feature space. Signal Processing. 2020; DOI: 10.1016/j.sigpro.2020.107733. PMID: 32943806.
Song H, Rossi EA, Yang Q, Granger CE, Latchney LR, Chung MM. High-Resolution Adaptive Optics in Vivo Autofluorescence Imaging in Stargardt Disease. JAMA Ophthalmology. 2019; 137(3):603-609. DOI: 10.1001/jamaophthalmol.2019.0299. PMID: 30896765.
Grieve K, Gofas-Salas E, Ferguson RD, Sahel JA, Paques M, & Rossi EA. In vivo near-infrared autofluorescence imaging of retinal pigment epithelial cells with 757 nm excitation. Biomedical Optics Express. 2018; 9(12):5946-5961. DOI: 10.1364/BOE.9.005946. PMID: 31065405.
Granger CE, Yang Q, Song H, Saito K, Nozato K, Latchney LR, Leonard BT, Chung MM, Williams DR, & Rossi EA. Human retinal pigment epithelium: in vivo cell morphometry, multi-spectral autofluorescence, and relationship to cone mosaic. Investigative Ophthalmology and Visual Science. Dec 2018; 59:5705-5716. DOI: 10.1167/iovs.18-24677. PMID: 30513531.
Rossi EA, Granger CE, Sharma R, Yang Q, Saito K, Schwarz C, Walters S, Nozato K, Zhang J, Kawakami T, Fischer W, Latchney LR, Hunter JJ, Chung MM, Williams DR. Imaging individual neurons in the retinal ganglion cell layer of the living eye. Proceedings of the National Academy of Sciences of the United States of America. 2017; 114(3):586-591; DOI: 10.1073/pnas.1613445114. PMID: 28049835.
Rossi EA, Rangel-Fonseca P, Parkins K, Fischer W, Latchney LR, Folwell MA, Williams DR, Dubra A, Chung MM. In vivo imaging of retinal pigment epithelium cells in age related macular degeneration. Biomedical Optics Express. 2013 Nov 1;4(11):2527–39. DOI: 10.1364/BOE.4.002527. PMID: 24298413.
Rossi EA, Roorda A. The relationship between visual resolution and cone spacing in the human fovea. Nature Neuroscience. 2010 Feb;13(2):156–7. DOI: 10.1038/nn.2465. PMID: 20023654.